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Solution of the static pair annihilation process in arbitrary dimension
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The pair annihilation of identical static particles distributed at randomdrdanensional space is studied in
the large time regime for a tunneling law. A superposition approximation is used to close the hierarchy of
equations describing the process, and it is shown that the density and pair correlation of surviving particles
have universal scaling expressions that are exactly calculated. These results are in close agreement with Monte
Carlo simulations in one, two, and three dimensig®d.063-651X98)11010-3

PACS numbsg(s): 05.40:+j, 05.70.Ln

I. INTRODUCTION wood superposition approximation, they reduce to a closed
system. Some years ago, such a system was solved numeri-
In the static annihilation modefsee[1] and references cally, and a comparison of the solutions with the results of
therein, a set ofA particles are randomly distributed in a Monte Carlo(MC) simulations in various dimensions indi-
d-dimensional space and removed by a fusion reacfion cates that the Kirkwood approximation works extremely well
+A—0, with isotropic reaction ratev(r), for any pair of [3,9]. In one dimension, this approximation is a shielding
particles separated by distancet must be stressed that the On€, and appears sufficiently accurate to describe the annihi-
particlesA are immobile, theA+A—0 reaction correspond- |ation process at any time, as we have shown in previous
ing, for example[2], to fusion in triplet states through a work [10]._We thus take_ this approximation for gra_nted, anq
tunneling laww(r) = wqexp(~r/ro). An interesting aspect of we analytically explore. its consequences. Qur main result is
this process at large time is its tendency to self-organizatio {0 show that the density and the correlation have, at large

o ) . rhme, scaling expressions that involve a unique function
which is also observef3,4] for its two species analog g exp q

) . _ . h(x), wherex is defined ax=r/R(t). In fact, one finds for
+B—0. This property manifests itself through a nontrivial the density exponent=d, for the density factoC=h(x

time evolution pf the dens!ty of suryiving particl@sét) and =) and for the correlationX(r =xR(t),t)=h(x)/h(=).
of the two-particle correlation functiod(r,t). Their behav- e functionh(x) is solution of an integral equation explic-
ior is phenomenologically well described in terms of the r€-itly soluble in one dimension, and we recover some of our
action radiug5] R(t), defined bytw(R(t))=1, and whichis  previous result§7], the other cases being easily solved by a
in practice the minimal separation between surviving parnumerical iteration.
ticles at timet. Starting from the initial valueX(r,t=0) In Sec. Il we recall the derivation of the evolution equa-
=1, as time increases the correlation vanishes foR(t), tions for the density and for the correlation. Using the super-
and when the separationlies roughly betweerR(t) and  position approximation we give their leading expression in
2R(t), it tends towards a limiting functioX..(r) quite dif-  the large time regime. At this point we introduce a function
ferent from unity, this value being recovered only at langer y(r,t) defined byy(r,t) = p(t)X(r,t), since we observe that
The process is thus dominated by fluctuations in the numbehe previous system implies a simple evolution equation for
of particles in a volume of size determined by the reactiony(r,t) and that this function suffices to fix the density and
radius. It also appears that the density decaysp@y  the correlation through the relationg(t)= y(«,t) and
=C/R*(t), where the exponent is expected6] to be equal  X(r,t)=y(r,t)/y(,t), which follow from the normaliza-
to the space dimensionality An exact determination in ar- tion conditionX(,t)=1. Moreover, as we show in Sec. lll,
bitrary dimension of the limiting correlatioX..(r), which  the solution of this equation at large time has the scaling
fixes the constart, is the purpose of this work since, to the form y(r,t)=h(x)/R%(t), provided thath(x) fulfills some
best of our knowledge, this has not been done, although vareonditions. These conditions imply thl¢x) vanishes foix
ous numerical or empirical advances have been made. <1, in agreement with the definition of the reaction radius,
We achieve this goal by a generalization of the methodhat its first nontrivial value ak=1 is fixed by the dimen-
we have recently applief] to solve theA+A—0 annihi-  sionality, and that its values for>1 obey an integral equa-
lation process on a one-dimensional lattice for a large clastion. This equation is solved in Sec. IV for the physical cases
of reaction ratesv(r). Our starting point is to consider the d=1,2,3 and we check that the solutions are in agreement
evolution equations for the density and for the two-particlewith the MC data for the density and the correlation function.
correlation function. When the three-particle correlationWe summarize our findings in Sec. V.
function appearing in these coupled equatidB$ is ex-
pressed in terms of the previous functions through a Kirk- II. THE PAIR CORRELATION EVOLUTION EQUATION
Let n(r,t) be the microscopic particle concentration at
*Electronic address: bonnier@pth.u-bordeaux.fr time t and positionr, r being here a-dimensional vector.
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The ensemble averaged products of these concentrations dehich from Eq.(1) is just— y(r,t)dp(t)/ot. Finally in E(r),

fine the many-center densitigg,=(IT;Z'n(r; ,t)). In par-
ticular (n(r,t))=p(t) and p,=p2(t)X(Jr;—r,|,t) where
p(t) is the global density an&(r,t) the pair correlation
function normalized according t6(r —oe,t)=1.

Taking into account the annihilation process one can writ

an infinite system of equatiori8] coupling p,, and p;,4 1.
For the density one finds

asr is large, in Eq.(3) the correlationX(r,t) is unity at the
leading order and one can use the approximation

pa(r,r’,r")=p3()X(r" ,)X(r",t)=p(t) y(r’ ) y(r",1).

rhe evolution equation Eq2) then becomes

—% t)= t)— t d—p )+ p()l t
22 (1) =W(D)pa(r.) = H(1.0) o (0+p(D1(r.0),

dp d
- = [ wir)patr 0D & ©
o . where the integral 4(r,t) is restricted to regiort(r)
and considering the decays of a set of two partickegA()
separated by a distanceone obtains the evolution equation . , , 0
of py(r,t). The pair itself can annihilate with a probability Id(r,t)=2J'E(r)W(r )y, ) y(r", Do’ (7)

w(r)po(r,t), or either member of the pair can annihilate

with a third particleA;, which happens with a probability Expressed in terms of(r,t), Eq. (6) has the following sim-
w(r")+w(r"))ps(r,r',r”) wherer’ andr” are the dis- pler form where the density has been eliminated:
tances fromA; to A; and to A,, respectively. Using the

symmetry ofps one gets

- % (rat):W(T)pz(f,t)wLZf w(r")ps(r,r’,r"D%’,
2

which becomes an equation fpy when one uses the Kirk-

wood [11] approximation
pa(r,r' 1) =p3(X(r,HX(r" , HX(r",t). ()

It is also convenient in Eq2) to decompose the’ integra-
tion region into 3 subdomaing,;, E,, and E(r) that we

describe here in the three-dimensional case, its generalizati

to other dimensionalities being straightforward. [t and
P, be those planes perpendicular to the lkgA, and con-
taining the pointsA; and A,, respectively. TherkE(r) de-
notes the region betweeR; and P,, E; the half-space
bounded byP; and wherer’ <r”, and finally the remaining

dy
—E(r,t)=w(r)y(r,t)+Id(r,t). (8

To end this section we compute explicitly(r,t) for the
dimensionsd=1, 2, and 3. In one dimensioik(r) is the
interval[A;,A,], andAgz is betweerA; andA,, i.e.,r=r’
+r". This gives a convolution integral

Il(r,t)zzforw(r’)y(r’,t)y(r—r’,t)dr’. 9

In two dimensions, using the coordinatés=(0,0), A,
=(r,0), As=(r'cos,r'sin §) the domainE(r) is the strip

(frl ml2<f<m/2, 0<r’'<r/coséd] and

/2 r/cos 6
Iz(r,t)=4f def w(r")y(r’, t)y(r",t)r’'dr’,
0 0
(10

space isE,, wherer’>r". We are now prepared to derive \yhere

from Eqgs. (2) and (3) the leading order expression of

dp,(r,t)/dt in the larger andt regime. First of all, the inte-

gration domaing, can be neglected due to the exponential

decay of the ratev(r’), r’ being inE, greater tham. In one

dimension, this is a shielding approximation where the anniA,=(0,0r),

hilation of the pair of particleg\; and A, is neglected com-
pared to the annihilation of the pak;A; when the three
particles are aligned in the ord8gA;A,. On the other hand,
in the half-spacé&, the distance” is greater tham and Eq.

(3) can be written as

par.r’,r")=p (X HX(r' 1) =y(r,0pa(r',1), (4)
where we definey(r,t) according to
y(r,t) =p(t)X(r,t) = p,(r,t)/ p(t). )
Thus

2f pa(r,r’,r"yw(r") D9’
E

1

=y(r,t) [ pa(r’,t)w(r")D%",

r"=[r?+r'2—2rr’cos ]2 (11)

In three dimensions, using the frame wheke=(0,0,0),
and A;=(r'sin #cose,r'sin #sin ¢,r'cosé)
the regionE(r) is given by[0< <27, 0<6<m/2, O<r’
<r/cosd] and finally

I5(r,t)

/2 r/cos 6
=477f sin 0d0f w(r")y(r',t)yy(r",t)r'2dr’,
0 0

(12

wherer” is again given by the Eq11). We thus shall use
the representation

I4(r,t)

/2 r/cos @
:f xd(o)daf w(r)y(r’, t)y(r" tyr'@=dr’,
0 0

(13
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where N,=26(0) (the Dirac function, A,=4, A3
=44 sing, and r” given by Egq.(11). Explicit solutions
vy(r,t) of Eq. (8) wherely(r,t) has the form given in Eq.
(13) are studied in the next section.

Ill. SCALING FORM OF THE EVOLUTION EQUATION

The reaction radiud(t), defined bytw(R(t))=1, i.e.,
R(t)=ro Int whenw(r)=e ""o, is such that at large time
no particles survive if their separations smaller tharR(t).

In this regime it is thus convenient to use a scaled variabl
x=r/R(t) and to see if Eq(8) admits asymptotic solutions
of the form

y(r,t)=p(t)X(r,t) =h(x)/R(t). (14

Imposing the conditiorX(r —c,t)=1 in the previous defi-

nition gives the density and the pair correlation function in

term of h(x) according to

p(H)=lim h(x)/R%(t),

X— 0

(19

X(r=xR(t),t)=h(x)/h(x). (16
These expressions evidently imply thHa@x), which is ex-
pected to vanish on some intervak@<x,, is elsewhere
positive and bounded. To studfx), we begin by inserting
Eq. (14) into Eqg. (8). Since dx/dt=—x/t Int, one easily
finds

Y e n=xd L ixeneotRD)! 1
— o (NH=x = X JIRY(D)In t. (17

To express the integradly(r,t) we change the variables ac-
cording tor =xR(t), r' =yR(t), andr”=zR(t) where from
Eqg. (11) zis defined by

z=[x?+y?—2xy cos 0]*2 (18)

Thus (') ¥(r",t)=h(y)h(z)R"2%(t) and

—RI29(1) J4(x.t) With ot
a(Xx,

2 x/cos 6
Jd<><,t>=fo xd(e)defo t7h(y)h(2)y*~dy,
(19

where we have used the relatiorfy R(t))=t"Y, which also
gives w(r)y(r,t)=t"*h(x)R™%(t). If we multiply both
sides of Eq(8) by tR*(t)In t, we obtain

xl-@ a4 [x*h(x)]=t*h(x)In t+tRI*(t)J4(x,t)In t
dx o .
(20)

The left-hand side of the previous equation is time indepen-

B. BONNIER

PRE 58

For the second term, one can observe that for any function
H(y) that vanishes for & y<y;<y,, and such thaH(y,)
#0, then at large time

Y2
fo t YH(y)dy=t Yin t[H(y,)+O(In"t)]. (22

Applying this relation to they-integration appearing in Eq.
(19 gives for the leading behavior ody(x,t), Jq(x,t)

é—vC(x)t*yllnflt and thus the second term of the right-hand

side of Eq.(20) behaves according to' Y:RY™¢(t)C(x),
C(x) being a positive time-independent function andthe
smallest value for which(y) is strictly positive. Time inde-
pendence of this term thus requires that1, in agreement
with Eq. (21) and the physical interpretation of the reaction
radius, and we deduce

d.

(23

a

For x=1, we finally obtain the following equation to deter-
mine the functiorh(x):

B d /2
x? dd—x[xdh(x)]zh(l)fo Ag(O)h

X ([1+x?—2x cos 0]¥2)d#.
(24)

Among the solutions of Eq(24) we have to select the
bounded ones which can fulfill E§15) and (16). This con-
straint determinef(1), since equating the two members of
Eqg. (24) in the limit x—o~ one obtains for a bounded solu-
tion dh(oo)=h(1)h(00)fg/2)\d(0)d0. These values are

d=1, h(1)=1/2, d=2, h(1l)=1/m,
d=3, h(1l)=3/4m. (25

Finally, Eq.(24) becomes fox>1

3 d /2
x1 dd—[xdh(x)jzf wa(Oh([1+x?—2x cos #]¥?)ds,
X 0
(26)

with w1(0)=35(6), u(0)=4/m, and us(8)=3sinh. We
obtain the solution of this equation in the next section.

IV. DETERMINATION OF THE SCALING SOLUTIONS

In one dimension, we have to solve

%[xh(x)]zh(x—l), h(1)=1/2. (27)

dent, and this has to be the case for each member of the
right-hand side, since they are non-negative. The first tern®inceh(x) vanishes for 8=x<1, this equation determines

implies that

<

h(x)=0 for 0Osx=<l. (22

h(x) on intervals of unit length and at each step we require
continuity at integer values of. For example, on the first
few intervals one gets
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1=x=<2, h(x)=1/2, TABLE I. Values of the asymptotic correlatioX..(x) for x in
the rangd1,3]. The columns corresponding tb=1 andd=3 are
2<x=<3, h(x)=[1+In(x—1)]/2x (28)  the predicted values. The two columns fbr2 are the theoretical

predictions(first column and the measured valuésecond columh
in MC simulations.

and one observes thafx) is close to its asymptotic value as

soon asx=2.5. For example one obtaing(2.5)=0.281, X d=1 d=2 d=3
h(3)=0.282, the exact value being

1.0 1.78 1.69 1.4@) 1.66
h(e)=e~7/2=0.2807 (29) 1.1 1.62 1.48 1.43) 1.39
' 1.2 1.48 1.32 1.33) 1.24
, , 1.3 1.37 1.21 1.23) 1.15
Wherey_z 0.5_77 aA...is t_heEuIer constant. This result can 1.4 1.27 1.12 1.18) 1.06
be obtained in the foIIowmmg Yva)l(y. Let(p) be the Lapla_ce 15 1.19 1.05 1.08) 1.02
trar_15f0rm ofh(x), H(p)=[71e P*h(x)dx. From EQq.(27), it 1.6 1.11 1.01 1.03) 0.99
fulfills 1.7 1.05 0.97 1.08) 0.98
1.8 0.99 0.95 0.93) 0.97
d 1.9 0.94 0.94 0.93) 0.98

el -p —pjo—
P gp H(P)+e PH(p)+e #/2=0, (30 2.0 0.89 0.96 0.93) 0.99
2.2 0.96 0.99 1.08) 1.00
whose solution idH(p) ={exd E1(p)]—1}/2, whereE,(p) is 2.4 0.99 1.00 1.08) 1.00
the exponential integral 2.6 1.01 1.00 1.08) 1.00
2.8 1.01 1.00 1.08) 1.00
3.0 1.00 1.00 1.08) 1.00

El(p):f e Ydy/ly=—vy—Inp asp—0. (31
P

The asymptotic value given in ER9) then follows from the ~ Overestimated from the finite size effe¢teee boundary con-
usual relation h()=lim[pH(p),p—0] These results, ditions are used and some particles artificially surxivine
which we have already derivel@] in a slightly different Values given in Eq(33), together with our findings for 1
way, imply a density and a pair correlation function in per-<X<3, are used to predict the asymptotic correlation
fect agreement with the MC simulations of the annihilationX=(X) =h(x)/h() given in Table I. Its values fod=1

process, as shown in RéfLO]. have been already compared with the MC resul{d.6i, and
In higher dimensions, fox>1 we have to solve the equa- We add in this table theé=2 MC data taken from the Ref.
tion [12]. These data, corresponding R(t)=14, are in good

agreement with our predictions, except in the vicinity of the
discontinuity for x=1%, where the full jump is truly

X /2 -
h(x)=x"¢ h(1)+f y“‘1J wa(Oh([1+y? asymptotic.
1 0

—2y cos 9]1/2)}(1 0 dy (32) V. CONCLUSION

The agreement of the MC data with our results indicate,
as expected, that the Kirkwood superposition approximation
and we are unable to find an analytic expressionhfr). gives a precise description of the static annihilation process.
However, the basic features of the one-dimensional solutioilVe have shown in this work the particular scaling form of
persist: it varies significantly only on the ranget <2, its  the large time limit of the density and the correlation implied
asymptotic valueh(«) being practically reached fox by this assumption. It must be stressed, as it is clear from our
=2.5. These facts appear easily when E8p) is solved derivation, that the asymptotic regime is independent of the
numerically by iterations. We obtain initial density. The self-organized effects that we find de-

crease smoothly as the dimensionality of the system in-
d=2, h(»)=0.188, d=3, h(x)=0.144, (33) cr%?sesé(tr)]e)ni:w limit being mean-field-like, withX,(r)
=60(r—R(1)).

) ) ) ) To conclude, we want to mention that the analysis we
which through Eq(15) give the asymptotic density. These haye performed here can be easily extended to the annihila-

values are in agreement with the MC results already reporte,, A+ B0 with a=d/2. and also extended to others
in [10] from the work of[12], which correspond to forms of the annihilation.

= = = <
d=2, 0.18h(«x)=<0.21, d=3, 0.14sh(oo)~0.1(;.4) ACKNOWLEDGMENTS
| thank Dr. R. Brown and Dr. Y. Meurdesoif for commu-
Our values(33) are close to the lower limits in E¢34), nicating to me the MC data, and for their interest in this
but this is expected since in the simulations the density isvork.
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